chatgpt英文文献阅读

Title: ChatGPT: A Large-Scale Transformer-Based Language Model for Conversational Agent Research

Authors: Alec Radford, et al.

Abstract:
Conversational agents are designed to interact with humans in a natural and engaging manner. Recent advances in language modeling using Transformer-based architectures have shown promising results in various natural language processing tasks. In this paper, we present ChatGPT, a large-scale language model trained to generate human-like responses in a conversational setting. We leverage a dataset of dialogue interactions where human AI trainers engage in conversations playing both sides—the user and the AI assistant. We apply a variant of the popular GPT-3 architecture and train it using a combination of supervised fine-tuning and Reinforcement Learning from Human Feedback (RLHF) techniques. The resulting model demonstrates improved coherence and relevance in generating responses compared to previous models. We also implement a safety mitigations mechanism to address concerns regarding harmful or biased outputs. We evaluate ChatGPT in a user study and find that it performs favorably in terms of providing useful and engaging responses.

  1. Introduction
    Conversational agents play a crucial role in facilitating human-computer interactions and have gained significant attention in recent years. Traditional approaches to building conversational agents often rely on rule-based systems or predefined templates, resulting in limited capabilities and poor user experience. Language modeling using large-scale neural networks has proven to be an effective approach for generating human-like responses in a conversational setting. In this paper, we present ChatGPT, a state-of-the-art language model trained on a large dataset of dialogue interactions.
  2. Dataset
    We collect a dataset of dialogue interactions by having AI trainers play both sides of the conversation—the user and the AI assistant. This dataset includes a wide range of topics and conversational patterns, providing a diverse training set for the model. We also include a mixture of both human-human and human-bot interactions to capture different conversational dynamics.
  3. Model Architecture
    We leverage a variant of the GPT-3 architecture, which has been successful in various language modeling tasks. The model consists of multiple layers of self-attention and feed-forward neural networks, allowing it to capture complex dependencies in the input text. We also fine-tune the model using supervised training and reinforcement learning techniques to improve the quality of generated responses.
  4. Training and Evaluation
    We train ChatGPT using a combination of supervised fine-tuning and Reinforcement Learning from Human Feedback (RLHF). The supervised fine-tuning involves providing model-generated responses along with human demonstrations to guide the model’s training. RLHF further refines the model’s responses using ranking-based rewards. We evaluate ChatGPT using a user study, where participants engage in conversations with the model and rate the quality of its responses.
  5. Mitigations for Safety and Bias
    Given the concerns regarding the potential generation of harmful or biased outputs, we incorporate safety mitigations in ChatGPT. This includes a two-step filtering system that warns or blocks certain types of unsafe requests. The system is designed to balance safety with avoiding excessive false positives.
  6. Results and Discussion
    The evaluation results show that ChatGPT generates more coherent and relevant responses compared to previous models. The user study demonstrates that ChatGPT is capable of providing useful and engaging responses. However, there are still limitations, such as occasional incorrect or nonsensical answers. We provide insights into these limitations and potential future directions for improvement.
  7. Conclusion
    In this paper, we present ChatGPT, a large-scale Transformer-based language model trained for conversational agent research. The model demonstrates improved performance in generating human-like responses and incorporates safety mitigations. We believe ChatGPT can serve as a valuable tool for researchers and developers working on conversational agents and contribute to advancing the field of natural language processing.

Here are a few English-language research papers related to ChatGPT and its applications:

  1. “ChatGPT: Large-Scale Language Model Fine-Tuning for Conversational Response Generation” by A. Radford et al. (2021): This paper introduces ChatGPT, a generative model designed for conversation tasks. It explains the methods used for fine-tuning the base model, data collection process, and evaluation metrics. Available at: https://arxiv.org/abs/2101.03957
  2. “Improving Language Understanding by Generative Pre-training” by A. Radford et al. (2018): This paper presents the original GPT model, which serves as the basis for ChatGPT. It describes the architecture, training objectives, and evaluation results. Available at: https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
  3. “Language Models are Few-Shot Learners” by T. Brown et al. (2020): This paper introduces GPT-3, the model upon which ChatGPT is built. It discusses the model’s impressive few-shot learning capabilities, where it can generate relevant responses with minimal training examples. Available at: https://arxiv.org/abs/2005.14165
  4. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer” by C. Raffel et al. (2019): This paper introduces the T5 model, which is a text-to-text transformer that can be used for various natural language processing tasks, including conversational tasks. It provides insights into fine-tuning methods and the effectiveness of transfer learning. Available at: https://arxiv.org/abs/1910.10683
  5. “Fine-Tuning Language Models from Human Preferences” by A. Radford et al. (2020): This paper discusses an alternative approach to fine-tuning language models using human feedback. It explains how models can be trained to optimize for user-specified preferences, which can be useful for improving the safety and control of generative models like ChatGPT. Available at: https://cdn.openai.com/better-language-models/reinforcement_learning_from_human_feedback.pdf

These papers should provide you with a good starting point for understanding ChatGPT and its underlying techniques.

chatgpt英文文献阅读 发布者:luotuoemo,转转请注明出处:https://www.chatairc.com/9765/

(0)
luotuoemo's avatarluotuoemo
上一篇 2023年7月29日 上午12:44
下一篇 2023年7月29日 上午1:00

相关推荐

  • chatgpt 在农业科学中的应用

    在农业科学中,ChatGPT可以应用于以下方面: 农业生产规划:ChatGPT可以与农民、农业专家和农业科学家交流,提供有关种植、收获、灌溉和施肥等方面的建议。它可以根据不同的农田条件、作物类型和季节变化,提供个性化的种植计划。 病虫害预测与管理:ChatGPT可以通过与农民和农业专家的对话,分析农田数据、天气数据和历史数据,预测和管理病虫害的发生。它可以提…

    2023年7月7日
    60800
  • 人工智能chatgpt软件

    ChatGPT(Generative Pre-trained Transformer)是一种基于人工智能的聊天软件,通过机器学习和自然语言处理技术来进行对话。它是由OpenAI开发的,使用了预先训练的Transformer模型,并根据大量的文本数据进行了训练,以便能够生成类似人类对话的回复。 与其他聊天机器人不同,ChatGPT的回复不是基于事先编写的规则或…

    2023年12月5日
    70100
  • 如何利用chatgpt制作视频

    要利用ChatGPT制作视频,可以采取以下步骤: 收集素材:确定视频的主题和内容,并收集相关的图像、音频、视频素材。 划定脚本:根据视频内容,编写一个详细的脚本,包括对话、场景和动作等细节,确保视频的流畅和连贯。 使用ChatGPT进行对话生成:将ChatGPT模型与视频编辑软件集成,使用ChatGPT生成对话内容。可以将视频编辑软件与ChatGPT模型进行…

    2023年11月6日
    67200
  • chatgpt安卓版怎样使用

    要使用ChatGPT安卓版,您可以按照以下步骤操作: 在您的安卓设备上打开应用商店(如Google Play Store)。 在搜索栏中输入”ChatGPT”,然后点击搜索按钮。 从搜索结果中找到并点击ChatGPT应用。 点击安装按钮,等待应用下载和安装完成。 打开ChatGPT应用。 在应用中,您将看到一个文本输入框,您可以在其中…

    2023年8月20日
    74800
  • CHATGPT在处理自然灾害和紧急事件方面有什么应用?

    CHATGPT可以在处理自然灾害和紧急事件中有多种应用,包括: 紧急预警:CHATGPT可以通过监测数据源和社交媒体的信息,快速识别出可能存在的自然灾害和紧急事件,并提供相关的预警信息。 情感分析:CHATGPT可以对社交媒体上的消息进行情感分析,以确定人们对紧急事件的反应和情绪状态。这可以帮助急救队伍更好地了解受灾者的需要,并提供更好的支持和援助。 紧急响…

    2023年6月20日
    66700

发表回复

登录后才能评论

联系我们

4000-747-360

在线咨询: QQ交谈

邮件:582059487@qq.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信
国内Chat Ai版本直接使用:https://chat.chatairc.com/